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High-Frequency Sum-Rules for Classical Relativistic 
Plasmas in a Magnetic Field 
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High-frequency sum rules for the transverse elements of classical relativistic 
plasmas in a magnetic field are derived. The relativistic effect reduces the plasma 
mode frequency by a factor of (y-l(1 - v2/3c2)). 

1. I N T R O D U C T I O N  

in the derivation of the high-frequency sum rules of  the full dielectric 
tensor (Kalman and Genga, 1986; Genga, 1988a) based on a nonrelativistic 
approach,  we found that the inclusion of the transverse fields led to the 
appearance of contributions of  order re~ c 2. To achieve a consistent treat- 
ment it would be of interest to calculate the classical relativistic high- 
frequency sum rules using a relativistic method. 

The known results pertain to the full dielectric tensor in an isotropic 
situation (Genga, 1988b). It is known (Kalman and Genga, 1986) that in 
an anisotropic system in the presence of  an external magnetic field, the 
dielectric tensor has six independent elements and this makes the problem 
more complicated. Further, the relationship between the elements of  the 
external and current-current  response function elements and the elements 
of  the dielectric tensor become quite involved. Finally, the appearance of 
the cyclotron frequency renders the structure more complex. 

In this work, therefore, I study the high-frequency behavior of  the full 
dielectric tensor in an anisotropic situation based on a relativistic approach. 
I derive the relativistic high-frequency sum-rule expansion up to order - 5  
The method of  derivation relies on the Hamiltonian formalism (de Gennes, 
1959). As in the previous cases (Kalman and Genga,  1986; Genga, 1988a, b), 
the particle Hamiltonian is enlarged so as to include the photon degrees of  
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freedom; this allows the description of the transverse interaction. In this 
situation it is known (Kalman and Genga, 1986; Genga, 1988a, b) that in 
addition to the particle contribution to the sum-rule coefficients, the photon 
gas, coexistent with the high temperature, generates its own contribution. 
It is known that the exact evaluation of this contribution is hampered by 
two conditions: Thus, (1) the classical ultraviolet divergence requires that 
even within the framework of a classical theory one describe the photons 
via the quantum Bose-Einstein distribution, and (2) the equilibrium descrip- 
tion implies that one single temperature exists for the combined particle- 
photon system. 

In Section 2, I describe the general relations between the external or 
current-current response function sum-rule coefficients and those of the 
dielectric tensor. Then the exact to-2, to-3, to - 4  and to-5 sum-rule coefficients 
for transverse elements are calculated. The long-wavelength limit of the 
result is evaluated in Section 3; its possible applications for the dispersion 
relation of plasma modes are also discussed in Section 4; the plasma modes 
in consideration are the extraordinary and the ordinary modes for propaga- 
tion parallel and perpendicular to magnetic field, respectively. I summarize 
the results in Section 5. 

2. TRANSVERSE S U M  RULES 

The full dielectric tensor e~(kto)  or the full polarizability tensor 
a~'~(kto) are expressible in terms of the corresponding "external" quantity 
t~"~(kto) as (Kalman and Genga, 1986; Genga et  al. ,  1988a, b) 

oL = &(A- &)-~A 

A = 11 - n2T 

n = k c / t o  (1) 

T = 11 - k "  k / k  2 

t~"~(kw) is also known to possess the high-frequency sum-rule expansion 

~ " ' ( k w ) = -  E ,+, (2)  
/=1 O.) 

I odd 

o0 f i , + , ( k )  
&W'(kto) = - 2 I+, (3) 

I=2 (.0 
I even 

where the superscript H stands for "Hermitian part of"  and prime and 
double prime denote "the real part of"  and "the imaginary part of," 
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respectively. I evaluate the ~ coefficients from the relation (Kalman and 
Genga, 1986; Genga et al., 1988a, b) 

47re 2 Bv(z d 
fi ~*+, ( k ) = - - V -  '~rr) 

where 

I-1 
�9 / x  . v  

(Jk (r)J-k(O))l~-=o (4) 

j~ =Y. v~* e x p ( - i k -  x,) (5) 
i 

The high-frequency expansions of ot(kw) are similar to those of d(kto) in 
equations (2)-(3), with f~l+l(k) replacing the corresponding f i l + l ( k ) - s  
(Kalman and Genga, 1986; Genga, 1988a, b). 

As mentioned in the introduction, the Hamiltonian which takes into 
account the description of the interaction of the plasma with the transverse 
electromagnetic field must include the photon degree of freedom. Therefore 
I have 

where 

N 2 1 1 
H =  • %mc + -  E V(lx,-xfl)+-X(Oq~q+q%2aqaq) (6) 

i=l 2 is~ 2 q 

1 /22~--1/2 

[/5 + iA Xq '~q exp(iq �9 xi) - ( e / c ) A ~  

vi = {1 + (1/m2c2)[(ffi + iA Y~q ~iq exp(iq �9 xi) - (e/c)A~ (7) 

A =  i e ( 4 ~ )  '/2 

where xi, / 5  ~iq, and A~ are the position, momentum, self-consistent 
field vector amplitude, and external magnetic field vector of ith particle, 
respectively. 

For an anisotropic system, in the presence of external magnetic field, 
& is nondiagonal; hence, both odd and even frequency moments exist. 
Finally, we consider a coordinate system in which k = (0, 0, k), i.e., B system. 

The first moment leads to 

47re 2 
f i~ ' (k)  = 7 ,  fip(j~(O)j~(O)) 

V 

3 c 2 / /  
(8) 
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The second moment leads to 

i47re 2 
f i ~ ( k ) -  :'* O" 0 '" ;~ - - - ' - ~ ] ~ p [ ( J k (  )Jk( ))--(Jk(O)Jk(O)>] 

- Vi Vi V ~ + i k a V ~ V j  Vi - Vi~'~Vi) 
2 u 

x e x p [ - i k  �9 (x~ - Xi)]) (9) 

where I;'~* is the acceleration of the ith particle in the/x direction given by 

m-' ( v~_d v;~l o| 
1?~ = y~ 6"" " exp(iq �9 x~) l / -  _,--2-g- iA 2 e. 

I k  Uai  q 

+ A ~  [VI • (q• '~ exp( iq ,  x / )+2  - e (V~ x U ~  (10) 
q C J 

where 

1 E V(Ix,-xjl) 
�9 2 i#j 

a ,  on  Z~q ~  ~  ~exp(iq x,)+ e~ o aA ~176 (11) 
OxT=oX:- t -A  aq v, q �9 v, ~ x ~  (Xi) 

Thus, equation (9) reduces to 

iw2 e / 2 [ 2v2\ ~.~f,\ o 

third moment yields 

" 4"~'e2 :~,~ :~u n/~(k)=--~&(jk (0)] k (0)) 

41re 2 
- f l p y ( ( ~ ' ~ u ~ ' y + k ~ k a V ~ V ~ V ~ V ~  

V q 

- ik~V~ Vy V~ + ik~V"  V~ Vy) 

x e x p [ - i k  �9 (x i -x j ) ] )  (13) 

It is also known (Kalman and Genga, 1986; Genga, 1988a, b) that the 
gives rise to averages of presence of the photon degrees of freedom a~*, eq 

field coordinates of the form (aq aq } and (% % }. In strict thermal equilibrium 
these are expressible in terms of inverse particle temperature tip and radi- 
ation temperature /3r, respectively, and have to be calculated quantum 
mechanically even in the framework of a classical theory as in this case. 
By introducing 

1 1"2 i Cq~-N/~[(.Oq a q  "~-Wlq/2 eq)eq (14) 

O)q = qc 
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~'~ and as a new set of coordinates with polarization vectors Sq , 
i i* i 

7]q : C q  C q  (15) 

identified as the equivalent of the photon number operator, then averages 
are obtained by setting (Kalman and Genga, 1986; Genga, 1988a, b) 

( '~ iq) : [exp(flrhWq) - 1] -1 

Thus, equation (13) becomes 

( ( 2  2 A v  k 2 
[ + T  [f(Xk) - + T f  a;~(k)=w~^ y-2 1 3c2/[ ]3, K 

+ - -  Tq Sk-.f(Xq) (16) / ,  q \ k--q N q  

where 

k . k  ~ 
L~ ~= k 2 

T~ ~= 6~ ~ - k . k ~ / k  2 
(17) 

X k = h O . ) k ~  r 

X 

f ( x )  - eX _ 1 

In order for (16) to be acceptable, we argue as before (Kalman and Genga, 
1986; Genga, 1988a, b) that in the limit k-~ 0 the distinction between particle 
(longitudinal) and radiation (transverse) temperatures is meaningless, hence 
fir is treated as a k-independent quantity, such that flr(k=O)=~Sp; but 
/3r(k ~ 0) is unaffected by this condition. 

The fourth moment yields 

~ "  = i4~re2~P2 v ~-~ [(jk(O)jk(O))-- (jk(O)]k(O))] 

i4~-e2,Bp 
= 2V  ~ (( V,"~ V; "~ + ik/3V~ V~I/~ - ik'~V'~ V;'~ V, ~ 

u 

2k Vi Vi VJ + k  k v~ v~ v) vj + ~ ~ '~ 

+ 2k'~k ~ V~' V~ Vf  ~'? - k~'kYV'~ V[ V? I/; 

+ k~'k~'V'~ V7 V~ V~ Vy - V~ Vy + ik~V~ V~ V~ 

- ik'~f/7 V~ V f -  k~'k~f/j ~ VyV~ V~+2k'~Vy f / f f /~ 

- 2k~k ~ V~' ~ V2 V~ + k~'k~'Vy V]" v~ f/~ 

- k~k~V~ Vy V~. V~ V~)) (18) 
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Using the same arguments as those used in the evaluation of [ ~ ( k )  above, 
we find that equation (18) reduces to 

,, i3tO2peB ~176 (,y-s[(e~O, Ok ~, + e~ ~ + e,~'pk2]) 
a ~ ( k )  - mif3~c 

ito4 eB~176 ( [ 1 
+ 2mc y-5 4E,aVp_F__~(Sk_q__Sq)(L~VEl..6pjr_g~lxE6vo) Nq 

+ (2e"~~ + T:"e~"P+ T:%"~~ (19) 
31 

3. LONG-WAVELENGTH LIMIT 

In the long-wavelength (k-~0) limit, the elements of the frequency 
moments are as follows: 

f) 2 
^ o22/ -1//1 ~ \  a;'(k) = fi22(k)= fi323(k)= p \7  ~k - ~ c  2 ) /  

( ( fi12(k ) : _a32,(k):itoe2f~ y-2 1--~-j]/cos 0 

- -  1 ]3pEcorr J r -  ~411(k) = 094 1 +/(2 --~ ~4.qh3C3 

= 1 Go+3@2(5G,+2G2) k 2 ]}(,y-2 (1 _ ~c2) )2v2  

fi13(k) = fi43'(k) = 0 
{,+::( 2 

4 - -  l -  fi422(k) = top i5 J~PEc~ nt ~ 4  . 3  3 
p~r/n c 

x L - ~ + ~ 2  [~r2 1 Go+3@2(5G1+2G2)k2]}(y_2(l_~c2]/2v2~\ (20) 

^ 4 1+ 3+ /3,Ecorr + - 4  ~3 3 D 3 3 ( k )  : tOp p r ~ n  c 

F ~2 1 Go+ l__~___7(5G,+G2)k21} ( (1--~c2]/ x L4-5-+ 3"--~2 30"rr 7-2 2v2~\ 

2 E ~2(k)=-~21(k)=i2tO412{l+~(3--~fle . . . .  ) k ~  -t- ,~ ,.~ 4J~P 3 3 K zp r rltl C 

FTr 2 5 + l__2__(25G,+9G2)k21}( _S)cos 0 
• 30=2 
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D , 3 ( k ) : - f I l 2 ( k ) : i 2 w 4 •  1+~ 6+ ripE .... -~4 rp 4 3 3 2rrrlh C 

rTr 2 5 1 (25G1+8G2)k2-ll(Y-5)I~ x Co+ sin0 

where E ... . .  Go, G1, G2, K 2, and ~ are defined as follows: 

4~e 2 
Eoor~ = 2 r/ ~ T gq ( V is the volume of the system) 

Go= f dxx2f(x)ng'l 

I ,o G, : dx x2f(x) q ~q rig q 

G2 = dxx2f(x) - -  rlgq (21) 
Oq z 

K2=47re2~7/3 p (r/ is the particle density) 

eB ~ 
fZ = (the electron cyclotron frequency) 

m c  

4. RELATIVISTIC EFFECTS ON PLASMA DISPERSION 

As mentioned in the introduction, the high-frequency modes of interest 
are the "ordinary" and the "extraordinary" modes. The extraordinary mode 
of interest is the one with cutoff frequency 

D. [" [ 4 t o 2 \  1/2"] 

" 2 = 2 - L l + t l + - - ~ )  J 

these modes are considered when the direction of propagation is along and 
perpendicular to the magnetic field. We use a coordinate system where 
k = ( 0 , 0 ,  k) a n d B  ~  ~ o B=), i.e., the k system. 

4.1. Ordinary Mode 

For parallel propagation the ordinary mode does not exist; instead, 
we have a longitudinal mode which oscillates at the plasma frequency. The 
dispersion relation which determines the behavior of longitudinal plasmons 
is given by 

e33(k ) ~ 1 + ce33(kt.o ) = 0 (22) 
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After applying a small perturbation (Kalman and Genga, 1986; Genga, 
1988a, b) to the dispersion relation, we find that the ensuing plasmon 
frequency is given by 

ogJ k2\ / -2[ 2v2 \ \  
092(1{) +CL+AL-~)(~Y/ kl--'~c2)] (23) 

where 

4 1 /3PK2 (5G1+ G2) (24) 
AL( y, fir) = 3 +-~ rpEr + 30rr 2 r%qh 3 c 3 

- ~ ( ~  a Go) (25) CL(Y, ~r) -- ~477h3c3 + 3 ~.-----5 

For propagation perpendicular to the magnetic field, the ordinary mode 
exists and the dispersion relation which determines its behavior is given by 

( E l l -  I"12) = 0  (26) 

The ensuing frequency of the ordinary mode in this case can be written as 

2 y-2 1-- (27) w =w I + C L +  + A t  k 2 

where 

2 
ripE .... -{- ~ 3 3 (5GI-I-2G2) (28) AT(y, rr) = 1 - i 5  307r rrrlh c 

4.2. Extraordinary Mode 

For propagation along the magnetic field the dispersion relation which 
determines the behavior of extraordinary mode is 

(el, - n2) 2 - e~2 = 0 (29) 

This leads to the ensuing expression for the frequency of the extraordinary 
mode: 

~1--- ~" ~ (d+~ATlk21< (1 (30) o92(k) = o92] 1 'r"-~CL 'k y/-2 2 V2"~ N 
L w2 \ o~2 I .J 3c2)/ 

In the case of propagation perpendicular to the magnetic field we find that 
the dispersion is given by 

(E22- r2) 833 -- 8323 -= 0 (31) 

which leads to the frequency 

[- w~ 1 ( 2  2w4 A~\ 21/ 2[ 2V2'~\ W2(k)=w2Llh--"~CLJr~''-2|r +---4---~}k |~y/- 11 / (32) 
o92 zwp \ w~ K / ..1\ \ -~ ic2 )  



High Frequency Sum Rules 

where 

Ax= 2 +lflpEcorr-F flPK2 (10GI+3G2) 
60~2f14"qh3C 3 

901 

(33) 

5. CONCLUSION 

The frequency of the relativistic modes in consideration are reduced 
by a factor (y-~(1-v~/3c2))  as in the magnetic field free case (Genga, 
1988b). The effects of finite radiation temperature on correlations remain 
the same as in the results based on the nonrelativistic approach (Genga, 
1988a). 
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